

CO₂ quality specifications – only a matter of CO₂ purity?

Heike Rütters

Federal Institute for Geosciences and Natural Resources (BGR)

Rütters, H.¹ and the COORAL^{1-3,6-8} and CLUSTER Teams^{1,2,4-8}

¹Federal Institute for Geosciences and Natural Resources (BGR); Hannover

²BAM Federal Institute for Materials Research and Testing; Berlin

³Institute of Thermal Separation Sciences (ITVT), Hamburg University of Technology;

⁴Institute of Petroleum Engineering, Clausthal University of Technology;

⁵Eurotechnica GmbH, Bargteheide;

⁶Institute of Energy Systems (IET), Hamburg University of Technology;

⁷Institute of Geosciences and Geography, Martin-Luther University Halle-Wittenberg;

⁸DBI Gas-und-Umwelttechnik GmbH, Leipzig

Directive 2009/31/EC

- (38) Access to CO₂ transport networks and storage sites, irrespective of the geographical location of potential users within the Union, could become a condition for entry into or competitive operation within the internal electricity and heat market, depending on the relative prices of carbon and CCS. It is therefore appropriate to make arrangements
 - How to define"...reasonable minimum composition thresholds..." ?
 - Which reasonable CO₂ purity/impurity levels may be viable in practical application?

legal instruments and to Community legislation intended to be met through CCS. Pipelines for CO₂ transport should, where possible, be designed so as to facilitate access of CO₂ streams meeting reasonable minimum composition thresholds. Member States should also establish dispute settlement mechanisms to enable expeditious settlement of disputes regarding access to transport networks and storage sites.

Key questions

What are optimum proportions of CO₂ and impurities in separated CO₂ streams to

- ensure long-term, safe geological storage,
- control corrosion of equipment and pipelines,
- ▶ keep costs of CO₂ capture, transport and geological storage economically acceptable,
- maximise contribution of CCS operation to climate protection,
- ▶ use pore space most efficiently (cf. other subsurface uses)?

Corrosion risk

Corrosion risk: Oxyfuel, (Post Combustion) > Pre Combustion

- → PreC: limit water content (<60% rel. humidity);</p>
- → PostC, Oxyfuel: prevent formation and condensation (!) of acids - in particular H₂SO₄ - by limiting contents of at least one of H₂O, SO₂, NO or O₂.
- \Rightarrow Generally limit water content of CO₂ streams to \leq 50 ppm_v for pipeline transportation \leftrightarrow dehydration of CO₂ streams necessary.
- ⇒ Analyse transport chain for temperature gradients.

Relative to pure CO_2 case, at impurity level of >1.5 vol% presence of impurities starts to significantly impact design and costs of transportation system.

 \Rightarrow CO₂ purity of ≥ 95 vol.% recommended for pipeline transport.

Geochemical reactions in storage reservoirs – key factors

- Specific minerals & specific impurities → specific processes
 - ⇒ detailed knowledge of mineral composition of reservoir rocks.
- Amount of impurities available in storage reservoir → extent of mineral reactions ⇒ spatial & temporal distribution pattern of impurities in storage reservoir important.
- Redox reactions potentially important.
- ⇒ Site-specific assessments of impacts of impurities necessary.

Natural "siderite" in experiment with CO₂ + 4% O₂

CCS clusters – additional challenges

- Potentially more diverse CO₂ stream compositions / lower CO₂ purity (depending on CO₂ emitters);
- variable CO₂ stream composition and mass fluxes.
- ⇒ Impacts of dynamics on various processes in CCS chain;
- \Rightarrow set up of CO₂ stream mixing schemes and facilities;
- ⇒ potential need for interim CO₂ storage arising from coupling of process steps of different flexibilities and loading capacities;
- \Rightarrow consider chemical reactions in CO₂ streams.

CLUSTER - Scenario

CO₂ emitters

- 7 power plants (coal, lignite, natural gas),
- 2 cement plants,
- 1 steel mill,
- 1 refinery
- \Rightarrow max. annual amount of captured CO₂: 19.35 Mio t

Transport

- Pipeline transport and ship transport,
- transport distance (trunk line, TL):
 300 km onshore, 100 km offshore

Storage reservoir

- saline aquifer (Buntsandstein),
- offshore,
- depth: 1600 m

CO₂ stream composition of different emitters

(Contents in mol%; H₂O content: 50 ppm_v)

	CO ₂	N ₂	02	Ar	NO _x	SO ₂	SO ₃	СО	H ₂	CH ₄	H ₂ S	cos
C/L-Oxy	98.003	0.710	0.670	0.590	0.010	0.005	0.002	0.005				
C/L/G-Post	99.931	0.023	0.015	0.023	0.002	0.001	0.001	0.001				
L-PreC	98.004	0.900		0.030				0.040	1.001	0.010	0.005	0.005
Cem-Post	99.931	0.023	0.015	0.023	0.003			0.001				
Cem-Oxy	98.005	0.840	0.590	0.540	0.010			0.010				
Steel-Post	99.931	0.023	0.015	0.023	0.002	0.001		0.001				
Ref-Post	99.931	0.023	0.015	0.023	0.002	0.001		0.001				

L: Lignite, C: Coal, G: Natural gas, Cem: Cement plant, Steel: Steel mill, Ref: Refinery

Chemical reactions in CO₂ streams

Interplay between NO_x , SO_x , O_2 :

$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

 $2 \text{ NO}_2 + \text{O}_2 \rightarrow 2 \text{ NO}_3$

$$NO_2 + NO \leftrightarrow N_2O_3^{+\frac{H_2O}{3}} HNO_2$$

 $2 NO_2 \leftrightarrow N_2O_4^{+\frac{H_2O}{3}} HNO_2 + HNO_3$
 $NO_2 + NO_3 \leftrightarrow N_2O_5^{+\frac{H_2O}{3}} 2 HNO_3$

$$2 SO_2 + O_2 \rightarrow 2 SO_3$$

 $SO_2 + NO_2 \rightarrow SO_3 + NO$
 $SO_2 + H_2O \rightarrow H_2SO_3$
 $SO_3 + H_2O \rightarrow H_2SO_4$

(very slow)
(faster alternative)

⇒ How will reducing impurities modify this interplay?

Conclusions

- → CO₂ quality specifications are <u>not</u> only a matter of CO₂ purity (i.e. CO₂ content).
- → The "rest" also matters, in particular contents of reactive impurities affecting material corrosion and rock alteration.
- → Also chemical reactions in CO₂ stream to be considered, in particular when combining CO₂ streams of different compositions.

Acknowledgements

Funding by BMWi

&

third-party funding of project COORAL by

Supported by: Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag

ALSTOM, EnBW, E.ON, Vattenfall, **VNG**

