

REPP-CO2 – Czech-Norwegian research project to prepare a CO2 storage pilot in the Czech Republic

REPP-CO2

- Coordinator: Czech Geological Survey (CGS)
- Partners: IRIS, VŠB Technical University of Ostrava, ÚJV Řež, a.s., Research Centre Řež, Miligal, s.r.o., Institute of Physics of the Earth, Masaryk University (UFZ)
- Funding: Norway Grants
- Budget: 77 mil. CZK ≅ 2.85 mil. €
- Grant provider: Ministry of Finance
- Project partner: Ministry of Environment
- Project duration: 23/1/2015 30/11/2016

Project objectives

- (i) Assess the selected geological structure (a depleted oilfield) as a possible geological storage site for a research CO2 storage pilot project, utilising the methodology according to the Czech national law No 85/2012 Coll. on the storage of carbon dioxide in natural geological structures;
- (ii) Strengthen the **Czech-Norwegian cooperation** in the area of CO2 geological storage and related research and development;

Project objectives

(iii) **Test the methodology**, procedures and criteria for description and assessment of a planned CO2 storage complex as specified by the **law No 85/2012 Coll.** on the storage of carbon dioxide in natural geological structures under real conditions of a concrete storage site preparation;

(iv) Perform **geological modelling** of the storage site and subsequent **numerical simulation of CO2 injection**;

Project objectives

- (v) Perform a **risk analysis of the storage site**, including assessment of conflicts of interest, proposal of risk mitigation measures and compilation of **storage site monitoring plan**;
- (vi) Newly assess the potential of the Carpathian rock formations in the area of the Czech Republic from the CO2 storage point of view.

Project progress

Project complexity

Team work, cooperation and keeping deadlines are essential:

- 10 Activities
- 54 Tasks
- 106 deliverables
- >110 researchers and technicians from 7 institutions

LBr-1 location

Storage capacity estimation

- $M_{CO2} = \rho_{CO2} * R_f (1 F_{IG}) * OGIP * ((P_s * Z_r * T_r) / (P_r * Z_s * T_s)) \cong produced gas volume * Bg factor * <math>\rho_{CO2}$ for gas
- $M_{CO2} = \rho_{CO2} * (R_f \times OOIP / B_f V_{iw} + V_{pw})$ \cong produced oil volume * ρ_{CO2} for oil

Recovery factor, fraction of injected gas, pressure, temperature, gas compressibility factor, formation volume factor, injected and produced water.

(Bachu et al. 2008, CSLF)

Storage capacity estimation

Fundamental assumption:

- •The volume previously occupied by the produced hydrocarbons becomes, by and large, available for CO2 storage.
- •... but not for reservoir in hydrodynamic contact with an underlying aquifer

Storage capacity estimation

Estimation for LBr-1

- Production history: 72.4 th. m³ oil, 75.4 mill. m³ gas
- CO₂ density: 630 kg m⁻³
- Bg factor (compress.) = 0.0078169
- Estimated capacity = 417 kt CO₂

Lessons learned

- "Digging" for information from old archive data is time consuming and requires specific "local" knowledge but results can be excellent
- Supplementary site investigation is necessary, especially to get fresh cores for geomechanical and geochemical experiments and allow in-situ borehole tests (stress field, permeability)
- Local conditions need to be taken into account for choice of monitoring methods (high seismic noise level, periodical flooding, etc.)
- A promising CO2 source revealed (95.5 % purity) 240 th. t/yr released into the atmosphere
- Bureaucracy can exceed all expectations

Future pilot project development www.

- Future steps planned within the ENOS project:
 - detailed risk analysis of faults and legacy boreholes
 - simulations of possible leakage (threatening potable groundwater)
 - scenarios combining storage with EOR
 - trans-boundary issues (CZ-SK)
 - EOR potential of the Vienna Basin (CZ-SK-AT)
- Progress towards CO2 injection depends on industrial & governmental co-funding; recovery of oil prices needed
- Possible additional funding opportunities:
 - next round of Norway Grants
 - European funds

www.geology.cz/repp-co2