

Remediation of undesired CO₂ migration inside the reservoir

Axel Liebscher

GFZ German Research Centre for Geosciences

on behalf of

R.J.Drysdale, D. Loeve, E. Peters, M.P.D. Pluymaekers, F. Jedari Eyvazi, B. Orlic

Examples for remediation measures

Assess the efficiency of different measures to manage or modify CO₂ flow patterns in the reservoir

Brine injection:

Investigate the effectiveness of water injection as a remediation measure for migration within the reservoir

Flow diversion

Investigate the effectiveness of diversion of injected CO₂ to adjacent reservoir compartments for remediation of unintended CO₂ migration

Selected model

- The Johansen formation has been investigated and the NW segment selected.
 - > Johansen is a potential candidate for CO₂ Geological Storage.
 - The segment chosen is bounded by sealing faults to the west & north, pinch-out to the east, open and dropping deeper to the south.
 - ➤ 250km x 68km x 200-500m; depth 1600 2400m; 7 layers of alternating sandstone & shale; gridblocks 500m x 500m x 12m in sandstone.

17/05/2016 **MiReCOL**

position of remediation well WI

Simulations

- Fluids used: oil (water), gas (CO₂) & dissolved gas.
- A limit of 75% of lithostatic pressure was applied to both injectors.
- **Injection procedure:**
 - a) Inject CO₂ only for 250 years to find when the plume reaches the fixed water injection (WI) well (i.e. at x years)
 - b) Repeat (a) and stop CO₂ injection at year x-1 i.e. just before reaching the WI well; continue migration for a total of 510 years = unmitigated case
 - c) Repeat (b) and inject water at 5000 sm³/d in year x (for 1 year); continue migration to year 510 = mitigated case

Parameter & cases (scenarios) for simulation

The most influential parameters for leakage were selected as follows:

1) CO₂ injection rate ideally CO₂ leakage rate, but will be very difficult to estimate in reality, so

injection rate is the nearest approximation

2) Permeability

main reservoir factor controlling fluid flow

3) Reservoir depth

affects densities and the amount of gaseous CO₂

= 21 cases

CO2 Inj rate	K	Depth	Case
(t/yr)	(mD)	(m)	
5.0E+05	200	1800	v52
		2200	v49
	500	1700	v46
		2400	v43
	1000	1050	v40
		1650	v37
	1125	2200	v35
1.0E+06	200	1800	v53
		2200	v50
	500	1700	v47
		2400	v44
	1000	1050	v41
		1650	v38
	1125	2200	v34
3.0E+06	200	1800	v54
		2200	v51
	500	1700	v48
		2400	v45
	1000	1050	v42
		1650	v39
	1125	2200	v36

Migration pattern

Final CO₂ saturations, 1125mD, 2200m deep, 0.5E6 t/y (left) & 3.0E6 t/y (right)

Final CO2 saturations, 200mD, 1800m deep, 0.5E6 t/y (left) & 3.0E6 t/y (right)

Complete leakage profiles over the entire simulation period for the 0.5E5 t/yr CO₂ injection, 200 mD permeability and 1800 m reservoir depth case, with and without water injection.

Leakage reduction vs CO₂ injection rate

Delay in leakage vs CO₂ injection rate

Leakage reduction versus permeability

Delay in leakage vs permeability

Conclusions

- 1) Water injection does not provide a long-lasting blockage to CO_2 migration (1.4 to 7 years from the beginning of water injection).
- 2) Permeability has dominating effect on the CO_2 migration pattern with CO_2 injection rate having a lesser effect.
- 3) Very low permeability results in large reductions in leakage (more effective mitigation), although this is mitigated by high CO₂ injection rates when viscous flow takes over.
- 4) No consistent trend in leakage reduction was observed due to variations in reservoir depth.
- 5) The delay in CO₂ migration (i.e. the longevity of mitigation) is generally unaffected by variations in CO₂ injection rate or reservoir depth. However decreasing permeability has a strong increasing effect on the duration of mitigation.
- 6) The spatial effect of mitigation by water injection showed almost no variation between the cases studied.

Inspiration

- Compartments in the subsurface creating many small gas fields
- (Sub-seismic) faults in aquifers creating barriers
- Diversion of CO₂ to nearby reservoir compartments may remediate unintended CO₂ migration

Synthetic study: base case setup

- Dip of storage reservoir: 5°
- Fault juxtaposition: 30%
- Storage compartment located downdip
- Parameters varied: juxtaposition, dip, permeability receiving compartment, fracture permeability, P_{ini} , ΔP

Schematic

Radial jet drilling instead of hydraulic fracturing

www.petrojet.ca

One 2-inch lateral of 100m long: unintended migration stopped after 130 d.

Results

Results

Key parameters

Key parameters	bin 1	bin 2	bin 3	bin 4
Adjacent compartments	yes	no		
Depleted gas field or aquifer?	DGF	Aquifer		
Pressure difference between compartments (bar)	0	0-100	100-200	200-300
Fracture or lateral	fracture	lateral		
Transmissibility of fracture	0-50	50-500	500-5000	
Permeability of receiving comparment (mD)	0-1	1-50	>50	
Juxtaposition (%)	1-10	10-25	>25	

Key parameters are effecting the results (e.g response time) of technique the most

Example: Adjacent compartments? \rightarrow NO \rightarrow technique not applicable

- permeability receiving compartment
 - \rightarrow low \rightarrow long response time
 - → high → short response time

Output

INPUT	Scenarios			
Key parameters	1	2	3	4
Adjacent compartments	no	yes	yes	yes
Depleted gas field or aquifer?		DPG	DPG	DPG
Pressure difference between compartments (bar)		0	280	280
Fracture or lateral			fracture	fracture
Transmissibility of fracture			1000	100
Permeability of receiving compartment (mD)			5	5
Juxtaposition (%)			5	5
OUTPUT (as best as you can estimate) for the operator				
likelihood of success [%]	0	0	56%	40-60%?
ilkeliilood of success [70]	U	0	similar to	similar to
spatial extent of remediation (km)			reservoir size	reservoir size
			well, hydraulic	well, hydraulic
			fracture,	fracture,
economic cost of remediation (€) OR list of materials required			monitoring	monitoring
response time of remediation (months)			0.97	2.31
longevity of remediation (months)			infinity	infinity

Likelihood of success defined as:

Example scenario 3: P(total)=P(HF)*P(HFI)*P(RT)*P(L)=0.80*0.70*1*1=56%

P(HF)=Success ratio hydraulic fractures

P(HFI)=Success ratio hydraulic fracture trough interface or fault

P(RT)= normalized response time

P(L)= normalized longevity

