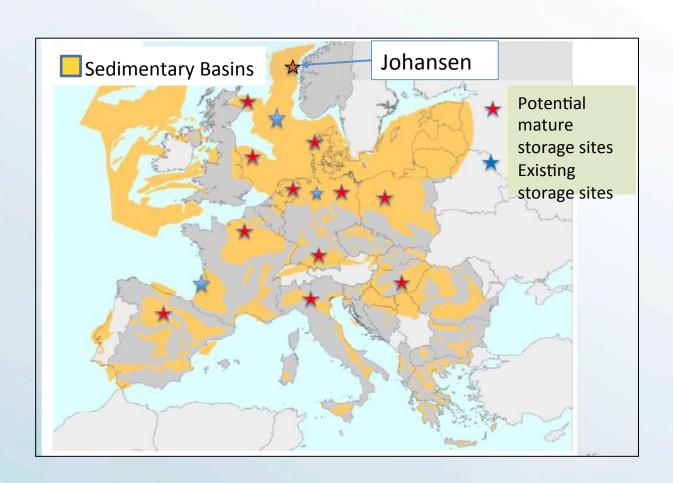
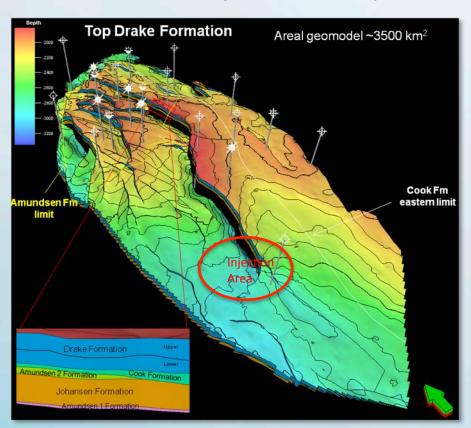
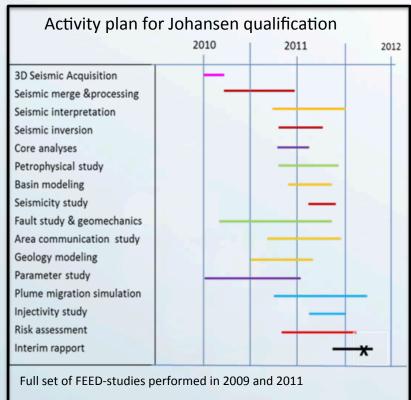
LIABILITIES; CASE STUDY JOHANSEN STORAGE SITE


Hallvard Høydalsvik, Senior Advisor Storage Development, Gassnova SF

JOHANSEN STORAGE SITE LIABILITIES

Objective of presentation;

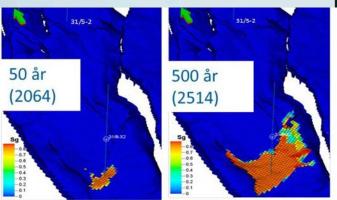

- Example of real case
- Method for assessment
- Level of liability



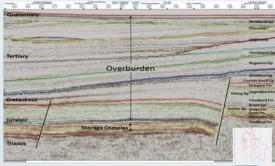
GASSNOVA

JOHANSEN STORAGE COMPLEX

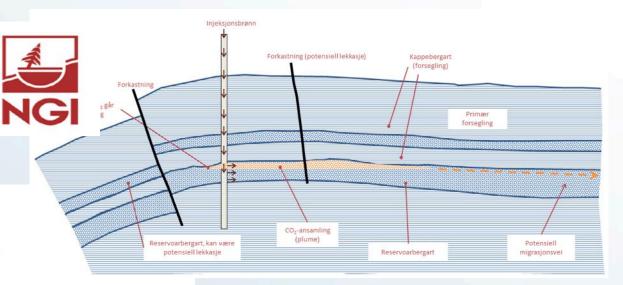
- The Johansen Storage Complex has been thoroughly evaluated
- 3D seismic, Neighbouring wells, FEED-studies etc.
- Matured past feasibility level
- Verification well in injection area required




JOHANSEN STORAGE COMPLEX DESCRIPTION


- Aquifer Storage in Jurassic sandstones of Johansen and Cook Formations
- Laterally defined by major faults to the north and east and by pinch out to the west and south
- Primary sealed by 200m of Drake Shale supported by several thick shale layers above
- Good injectivity and sand quality
- Storage capacity of min 500 mill tonn CO2 with additional upside
- God seal against leakage to the surface, minor risk for CO2-migration towards Troll field

Petroleum province, no residual hc



POTENTIAL LEAKAGES

- Faults:
 - Identified faults
 - Possible unidentified faults
 - Reactivation of faults
- Cracks/fractures in the cap rock:
 - Open/permeable fractures
 - * Natural cementation- soluble in CO₂ brine?
 - Induced fractures
- Pressure build up and pressure communication
- Leakage through pores in the cap rock:
 - Capillary flow
- Injection well
- Abandoned wells
- Connecting sand bodies
- Chemical reaction between CO2 and cap rock/overburden
- Catastrophic events
- Other heterogeneities in the cap rock/overburden, water/gas

Engaged experts to identify and assess potential leakages

Methodology

Migration

DATA COLLECTION AND ASSESSMENT

Information and documentation provided by Ross Offshore and Gassnova

IDENTIFY RISK FACTORS

Hazard identification (based on HAZID for Utsira CO₂-storage)

A GENERAL WORKFLOW FOR A PROBABILISTIC RISK ASSESSMENT (PRA) WAS

CO2 MIGRATION AND FLOW RATES CALCULATED AND SIMULATED

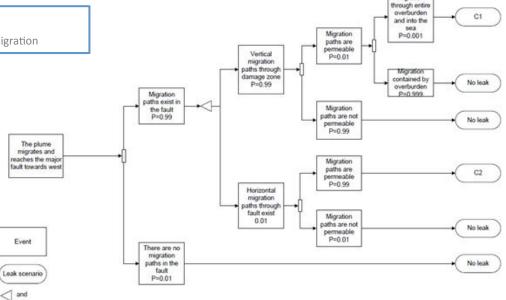
ESTIMATE FREQUENCY OF OCCURRENCES FOR EVENTS

Using **event trees**, expert opinions and database with empirical data

MODEL EVENTS AND ASSESS IMPACTS

Using **event trees** to evaluate potential outcomes

ESTIMATE IMPACTS


Calculation of leakage rates and migration

ESTIMATE RISK

In terms of **liability**. By combining probabilities (of leakage), leakage rates (given an unwanted occurrence) and estimated leaked ${\rm CO}_2$ amounts

Address Risk Mitigation and Verification Measures

Monitoring and corrective measures

MAIN RESULTS OF LEAKAGE ASSESSMENT

Leak Scenario	Expected % of total injected CO ₂ leaked
A: Leakage through the Major Western Fault	1.26E-04
B: Leakage through the TWOP/TWGP Fault	3.68E-04
C: Leakage through induced fractures	4.47E-06
D: Leakage through sub-seismic faults and palaeo fractures	8.34E-03
E: Leakage through the injection well	1.23E-03
Total	1.01E-02

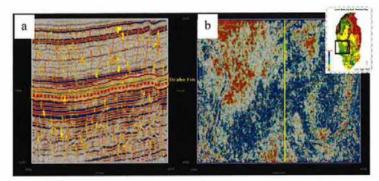


Figure 17: Fault In attribute from SVIPro; a) Seismic section shows the fracture/fault density, b) Map view of a time slice (~12 ms along the red dotted line on 'a') showing a polygonal fault system in the Lower Drake Formation (Ross Offshore report-2, 2011).

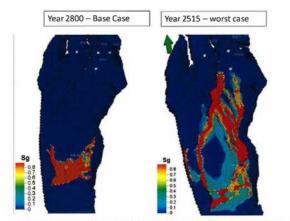
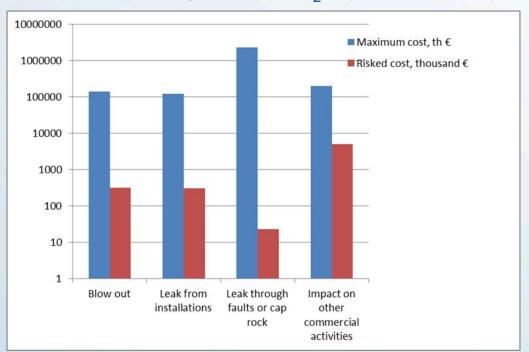


Figure 15: Plume migration top Cook. Comparison worst case and base case models (from Ross Offshore, 2011).

REMEDIATION ACTIONS AND COSTS

Category	Potential cost drivers/remediation	Estimated timing of occurrence	Cost for remediation, mill €/probability
Blow out	Killing well, potential relief well New injection well (25%) or repair of original well Fatalities CO2 quota paid for lost volumes (63 days) Halt in operations	0-70 yrs (during operations and transfer	140/0,22%
Leak from installations	Repair of facilities Fatalities CO2 quota for lost volumes Halt in operations	0-70 yrs (during O&T) >70 yrs (through plugged wells	120/0,3%
Leak through faults or cap rocks	CO2 quota for lost volumes, several scenarios (maks. 50 mill ton, 100 years Termination of activities New CO ₂ -storage to be developed	After 20-2500 years	2300/0,001%
Impact on other commercial activities	CO ₂ contamination of •freshwater resources •hydrocarbon resources •soil	After 150-300 years	12/2,5%


ASSUMPTIONS

- Significant leakage to surface requires development of new site
- CO2 quota paid by 50 Euro/ton for all leakages
- Time span of 1000 years
- For facilities and wells; Leakage and blow out frequencies, escaped volumes and mitigation periods are taken form North Sea Petroleum statistics.

RESULTS; LIABILITY COST DRIVERS

Liability cost for storing 3.2 Mt CO₂ a year over 50 years

Total technical liability;
1,5 mill € over 250 year period

	Fraction CO2 quota
Short term	20%
Long term	67%
Total	25%

10 000 €/yrs

4 000 €/yrs

CONCLUSION FROM OUR WORK

- For sites with good seal the liability in respect of leakage is limited
- Such sites are for example saline aquifers or abandoned fields in petroleum provinces, which have proved seal for millions of years
- In the unlikely occation that a leakage occur it will be costly
- CO2 quota makes 25%
- The numbers referred are approximations and must be understood as indications of levels with significant uncertainties