FEASIBILITY OF CO₂ STORAGE AND ENHANCEMENT OF HC PRODUCTION IN THE CONDENSATE GAS FIELD Q16-MAAS

Maurice Hanegraaf, Filip Neele, Ton Wildenborg

OCAP: Existing CO₂ Supply to Greenhouses Many Large-scale CO₂ Emitters in Rotterdam harbour Next Step: ROAD Project

3 Q16-Maas

NOT ON SCALE

,4 0,6

Storage Location: Q16-Maas

6 Q16-Maas

May 11, 2016

ROAD CONNECTION TO GREENHOUSES

NL POLICY

At the presentation of the Energy Report, Minister Kamp (Economic Affairs) said: *"Geothermal energy is vital to replace* gas"

→ CO₂ delivery to greenhouses is essential for roll-out of geothermal energy projects

NATIONAL NEWS 18-01-2016

Policy targets:

- 2015 3 PJ is realized (13 projects)
- 2020 it needs to be 11 PJ (~30 projects), and
- 2050 it needs to be 300 PJ (>1000 projects)

SYSTEM INTEGRATION HEAT NETWORKS

Q16-MAAS

- > Wet gas field, just offshore Rotterdam
-) GIIP 1.6 bcm
- > Depth almost 2900 m
- Initial conditions: p, T: 300 bar, 111 °C
- Discovered 2011
- > Start of production April 2014
- > End of production: end of 2022

Top main reservoir

INJECTION SCENARIO (2)

- Stacked reservoir:
- Highly permeable reservoir formation (Solling/Hardegsen) divided in two by a low permeable zone
- > Injection scenarios to study effect of:
 - Start time of injection
 - Location of injector
 - > Perforations in upper / lower layer
- > Optimise:
 - Condensate production
 - > Water production

INJECTION SCENARIO (1)

- > Use new, second well for injection
- Start injection *after* primary production is completed
- Injection for 2 3 years, ~1 Mtpa

CROSS SECTIONS

Cumulative gas production

CONCLUSIONS

CO₂ injection to start *after* primary production is completed

- > After injection starts, 'immediate' breakthrough of CO₂
- High cost of separating CO₂ CH₄
- Earlier start of injection: loss of sales gas
- > Additional volume of condensate produced ~20%
 - > Compared to regular production
- After ROAD project completes demonstration phase, Q16-Maas potential buffer for delivery system to greenhouses

> THANK YOU FOR YOUR ATTENTION

