IMPACTS: IMPURITIES IN THE CCS CHAIN FILIP NEELE (TNO, THE NETHERLANDS)

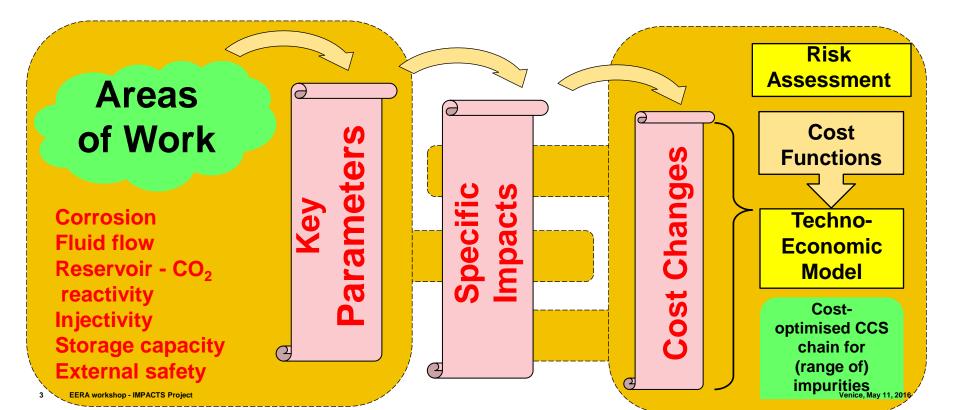
REPRESENTING THE IMPACTS TEAM

innovation for life

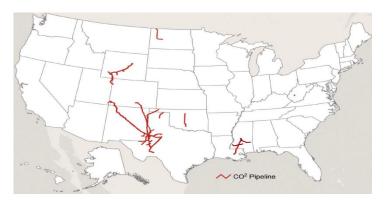
(INCOMPLETE LIST OF CONCERNS)

- > Capture
 - Cost of capture plus treatment of CO₂ vs quality of CO₂
- > Transport
 - Corrosion: H₂O removal vs liners, alloys
 - Integrity: H₂ removal vs stronger pipes
 - Transport system: purification CO₂ vs higher-pressure system
 - External safety: H₂S content vs larger safety distances
- Storage
 - Injection system: higher compression requirement vs purification
 - Loss of storage capacity: purification vs ETS 'budget'

IMPACTS: study trade-off between CO₂ quality and system design, system performance


innovation

PROJECT DATA FLOWS

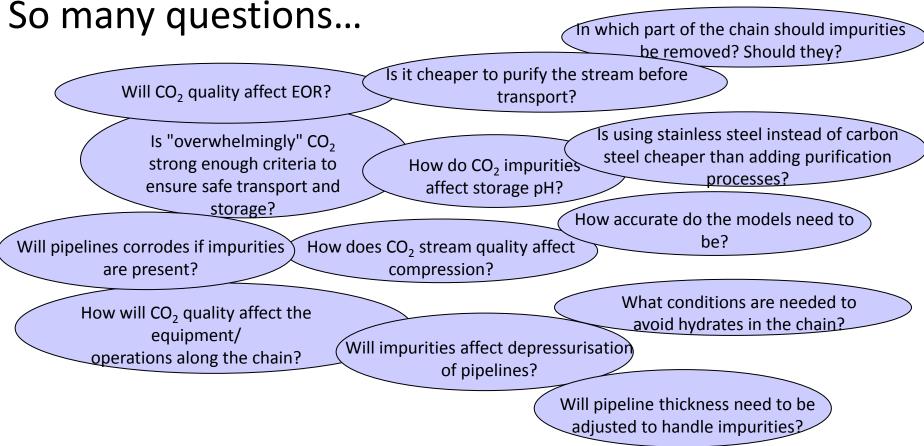


ARE THERE CO₂ QUALITY GUIDELINES CURRENTLY AVAILABLE?

- Industrial practice and recommended practice for CO₂ infrastructure exist.
- Often based on estimates and assumptions about the system.
- Fit-for-purpose: Direct use of CO₂ transportation experience is not always possible due to the difference in CO₂ mixtures.
- A specific know-how has to be developed to cover the lack of knowledge in the specific European applications.

DEFINING THE CO₂ QUALITY – KEY CRITERIA

Historically dependent on the source, transportation and usage


- CO₂ pipelines have been based upon standards for Natural Gas (NG) and were constructed with standard carbon steel (CS), hence
- critical to keep the CO₂ dry to avoid formation of carbonic acid

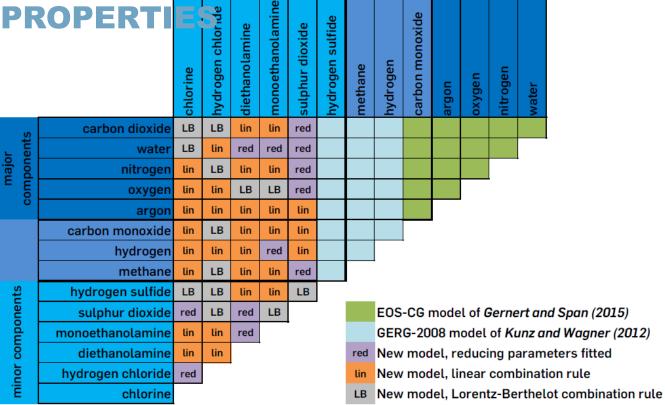
(Image courtesy of Kinder Morgan, 2006)

 Image shows internal view of a carbon steel pipe that has been transporting CO₂ for more than 20 years. When maintained dry there is no indication of any corrosion.

IMPACTS The impact of the quality of CO, on transport and storage behaviour

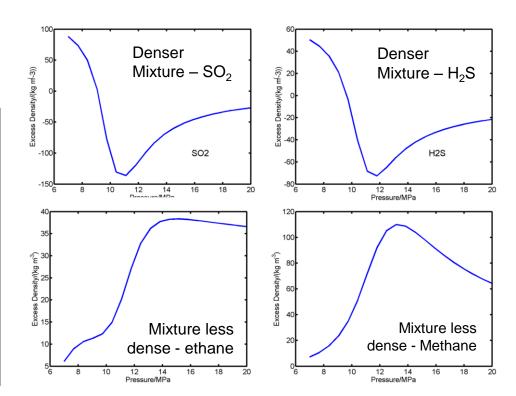
WORST COMBINATIONS

- Six combinations that produce the highest levels of impurities
 - [CO₂] above 95%
- > Water content not included
 - Defined by customer, not by capture process
- Desulphurisation included


CO ₂ source Capture technology	Coal-fired power plant Amine-based absorption	Coal-fired power plant Ammonia-based absorption	Coal-fired power plant Selexol-based absorption	Coal-fired power plant Oxyfuel combustion	Natural gas processing Amine-based absorption	Synthesis gas processing Rectisol-based absorption
CO ₂	99.8%	99.8%	98.2%	95.3%	95.0%	96.7%
N ₂	2000	2000	6000	2.5%	5000	30
0 ₂	200	200	1	1.6%		5
Ar	100	100	500	6000		
NO _x	50	50		100		
SOx	10	10		100		
CO	10	10	400	50		1000
H ₂ S			100		200	9000
H ₂			1.0%			500
CH ₄			1000		4.0%	7000
C ₂ +					5000	1.5%
NH ₃	1	100				
Amine	1					
	Post	Post	Pre	Оху	Amine	Amine

CO₂ MIXTURE PROPERTI

- TREND 2.0
 - Model for thermodynamic properties of CO₂ rich mixtures
 - Excel tool provided as interface
- Work done by Ruhr University (Bochum, GE), SINTEF (NO), Tsinghua University (China)

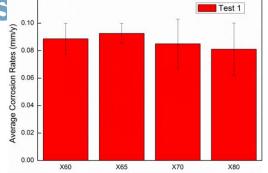

TNO innovation for life

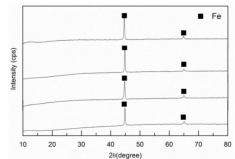
CO₂ MIXTURE PROPERTIES

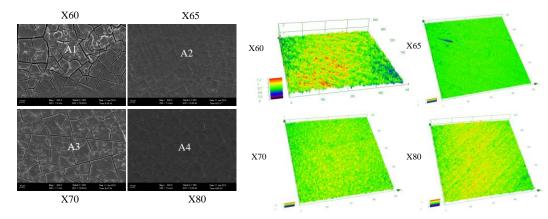
Insights into effects of various impurities on mixture properties. Example: density

Effect on density

- 'Excess density' curves show change in density of mixture when 10% impurity is added
- Positive values (for ethane, methane) indicate decreasing density of mixture
- Negative value (SO₂, H₂S) indicate that adding these to the CO₂ *increases* the density
 - > Smaller compressors...
- Larger storage capacity...


9

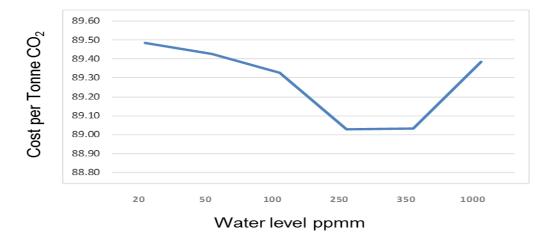



TNO innovation for life

- Examples of results from corrosion experiments
 - Examples show corrosion rates for several steel grades
 - > (Much) more detail in reports

STORAGE CAPACITY

- Example shows effect mixture properties on storage capacity
 - Several real (!) mixtures
 - Effects can be significant


	Coal-fired power station Amine based adsorption	Coal-fired power station Post combustion ammonia	Coal-fired power station Selexol based adsorption	Coal-fired powerstation Oxyfuel combustion	Natural gas processing Amine based adsorption	Synthetic gas processing Rectisol based adsorption	Cement Industry	'Ketzin' injection
Storage type	Oil field	Aquifer	Oil field	Aquifer	Oil field	Oil field	Oil field	Aquifer
wt % impurities Depth	0.24	0.05	0.21	1.28	0.93	0.41	4.99	7.37
800 m	-2.8	-0.5	-5.3	-16.0	-15.1	-9.7	-53.0	6.6
900 m	-2.0	-0.3	-4.1	-11.4	-11.0	-7.4	-41.3	5.0
2000 m	-0.7	-0.2	-1.7	-4.4	-4.2	-3.1	-12.2	-1.5
3400 m	-0.7	-0.2	-1.2	-3.2	-3.1	-2.2	-7.5	-3.3

IMPACTS RESULTS – WATER CONTENT

Techno-economic model:

Insight into possible impurity level trade-offs when capture cost curves included

Example:

Classic "bathtub" curve for moisture level with a short onshore pipeline (Benchmark Case B)

- Increasing water level requires cost of higher grade steel for pipeline
- Reducing water level requires costly additional processing
- Hence sweet spot at 250 350 ppmm

CHAIN-WIDE RESULTS

he quality of CO, on transport and storage behavio

- Summary of impact of impurities
- If water content is sufficiently low, most entries in table will become 'small'

Potonti a limmunity	Possible impacts					
Potential impurity	Health and Safety Physical Properties		Chemical properties			
Amines*	Small	Small	Small			
Ammonia	Medium	Small	Small			
Ammoniumsalts	Small	Small	Medium with low water			
Antimony	Small	Small	Small			
Chlorine and chlorides	Medium	Small	Medium with low water			
Carbon monoxide	Medium	Small	Small			
Carbonyl sulphide	Medium	Small	Medium with low water			
C2+ compounds	Small	Small	Small			
Heavy Metals	Small	Small	Small			
Hydrogen	Small	Medium	Small (if low O ₂)			
Hydrogen cyanide	Medium	Small	Small			
Hydrogen fluoride	Small	Small	Medium with low water			
Hydrogen sulphide	Medium	Small	Medium with low water			
Methane	Small	Small	Medium with low water			
Methanol*	Small	Small	Small			
Nitrogen	Small	Significant	Small			
NOx and SOx	Medium	Small with low water	Small			
Oxygen	Small	Significant	Medium if low H ₂ & H ₂ O			
Particulate	Small	Significant	Small			
Polyethylene Glycols*	Small	Small	Small			
Sulphurtrioxide	Small	Small	Medium with low water			
Water	Small	Significant	Significant			
*Present as carry-over from	n 'wet' CO₂removal p	rocesses				

Table 4: Summary of possible main impurities and their expected impacts

IMPACTS Recommendations on the need for upstream conditioning

It is generally more economic to clean up the CO_2 stream at capture (upstream) than to deal with significant downstream effects.

Justification:

- Higher quality stainless steel pipelines are expensive
- High costs of replacing storage capacity at a higher than expected rate due to reduced density of the CO₂ stream
- Corrosion by-products need to be handled

IMPACTS Recommendations on the need for upstream conditioning

A general cost-optimal level of nitrogen is 0.5%, or lower if naturally so (advanced amine is below 1000 ppmm)

Justification:

 This avoids excessive downstream effects due to, e.g., density reductions. However, reducing the nitrogen levels below this at source is not economic.

IMPACTS Guidelines on reaction during the mixing different of CO₂ qualities in a multi-user transportation system

Reactions between impurities in (mixed) streams are unlikely to happen

Justification:

- IMPACTS cases have O₂ concentrations and levels of potential fuels such as H₂ that are too low for burning / oxygenation to take place.
- Other reaction possibilities are extremely endothermic and/or below the flammable limit

IMPACTS: WRAP-UP

- > Available on IMPACTS website: <u>www.sintef.no/projectweb/impacts</u>
 - > IMPACTS reports, recommendations
 - > Detailed technical (public) reports, overview & summary reports
 - IMPACTS Toolbox (<u>http://www.sintef.no/globalassets/sintef-energi/impacts/d3-2-2-impacts-toolbox-.ppsx</u>)
 - > Provides overview of IMPACTS results, tools, recommendations, ...
 - > Quick introduction into areas covered by IMPACTS project
 - > Provides links to IMPACTS reports on each topic or highlight

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7-ENERGY-20121-1-2STAGE) under grant agreement n° 308809 (The IMPACTS project). The authors acknowledge the project partners and the following funding partners for their contributions: Statoil Petroleum AS, Lundin Norway AS, Gas Natural Fenosa, MAN Diesel & Turbo SE and Vattenfall AB.

2

