

The MiReCOL tool for corrective measures

Dealing with Liability, Session 3: Leakage mitigation

Logan Brunner, TNO logan.brunner@tno.nl

Overview

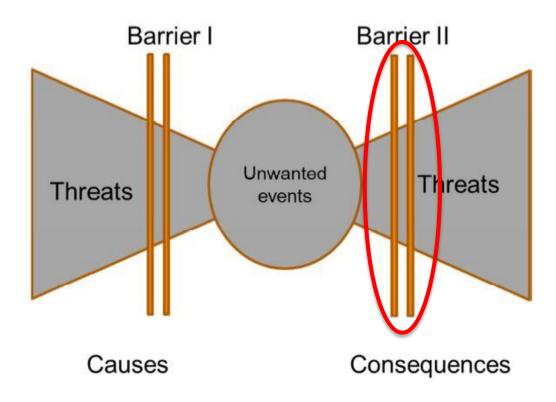
- MiReCOL Introduction
 - Explanation
 - Demonstration
 - Purpose of Tool
 - End use of Web App
 - Next steps

MiReCOL Introduction

MiReCOL Introduction

Intended for CO₂ storage

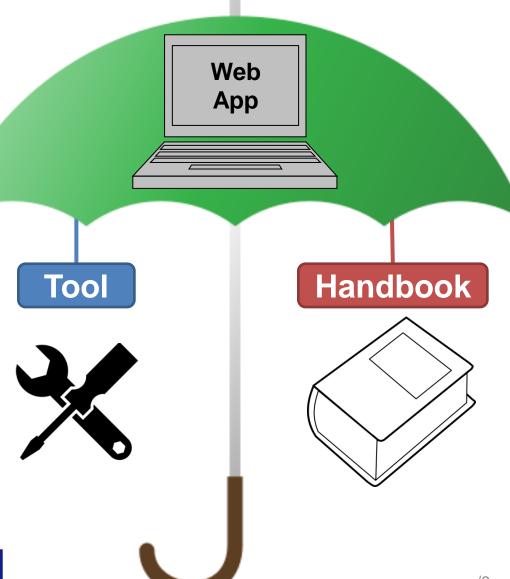
regulators


Provides <u>RISK-BASED analyses</u> of

mitigation and remediation techniques

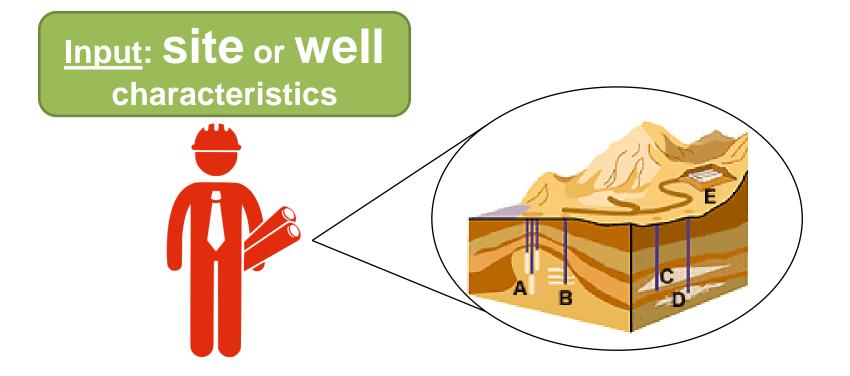
MiReCOL Introduction

On the bow-tie diagram



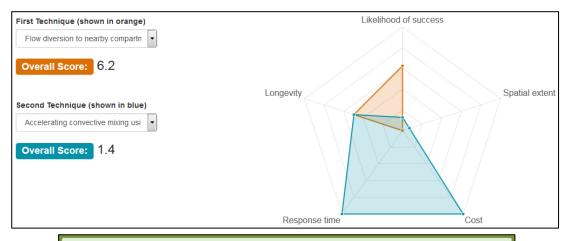
After detection of significant irregularity

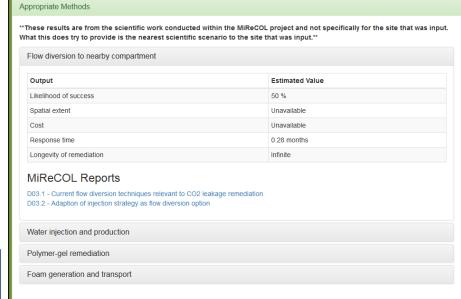
Two aspects of the web app



Tool

Handbook





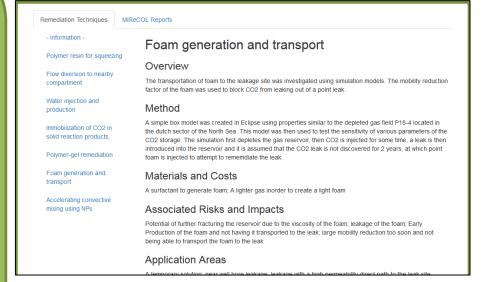
Tool

Output: information on mitigation and remediation techniques

Handbook

Tool

Handbook


Operator or regulator can view

MiReCOL reports

and

remediation

techniques

Demonstration

Purpose of the Tool

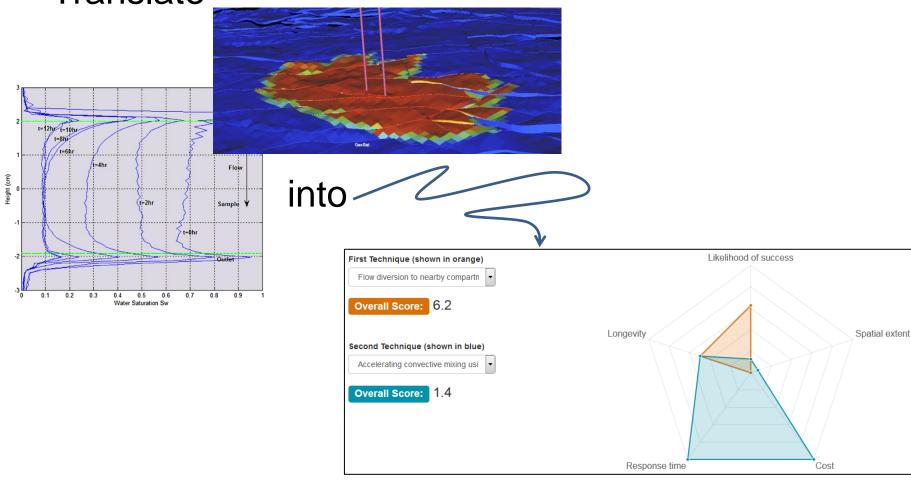
"The results will be published both as handbook and as an interactive web-based tool, to

inform

both

storage project operators and competent authorities

on the

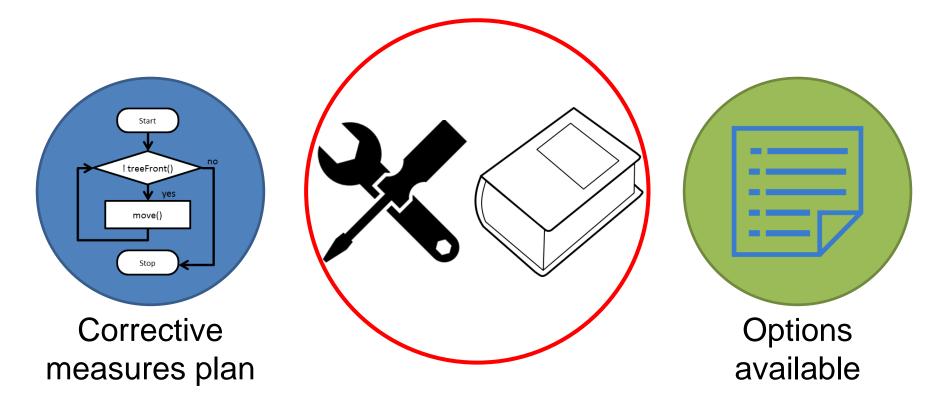

options available for remediation and mitigation."

Purpose of the Tool

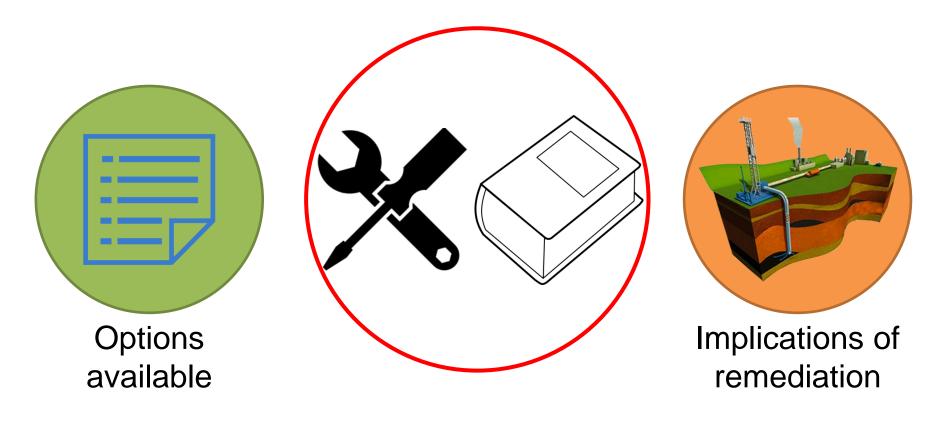
Translate

Purpose of the Tool

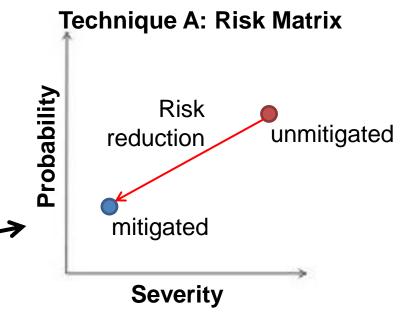
- How is this done?
 - Scientists generate various scenarios of sites for their technique
 - For those scenarios, the
 scientist provides 5 outputs →
 - The tool displays the closest match, along with an uncertainty value


- 1. Likelihood of success
- 2. Spatial extent of remediation
- 3. Economic cost
- 4. Response time of remediation
- 5. Longevity of remediation

End Use of the Web App


Operators

End Use of the Web App


Regulators and authorities

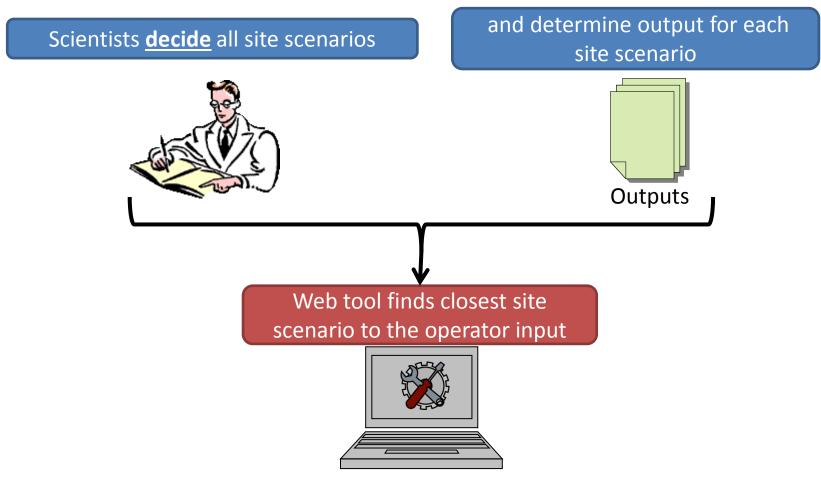
Next Steps

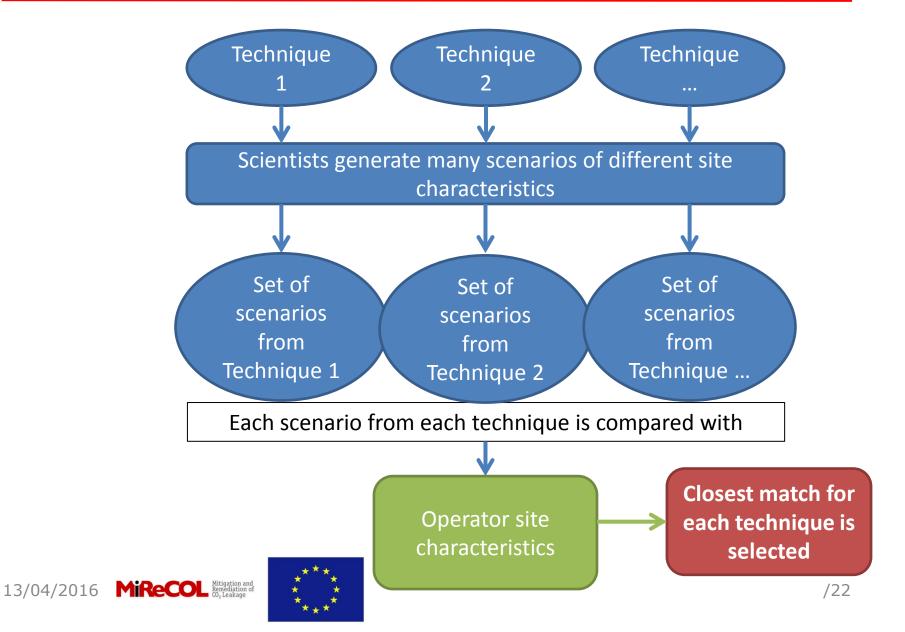
- Upload other remediation techniques to the tool and handbook
- Continue gathering ideas on functionality and use of the tool
- Include capability of the operator to investigate the different scientific scenarios
- Plot of overall risk reduction expected per technique

Conclusions

- Compilation of old and new remedial measures
 - Note: does not replace contingency plan
- Tool allows interactive comparison of remediation techniques
 - Based on scientific studies/simulations
- Handbook serves as a reference for
 - Operators
 - Regulators
 - Public
- Step to ensure safe storage and understand risks

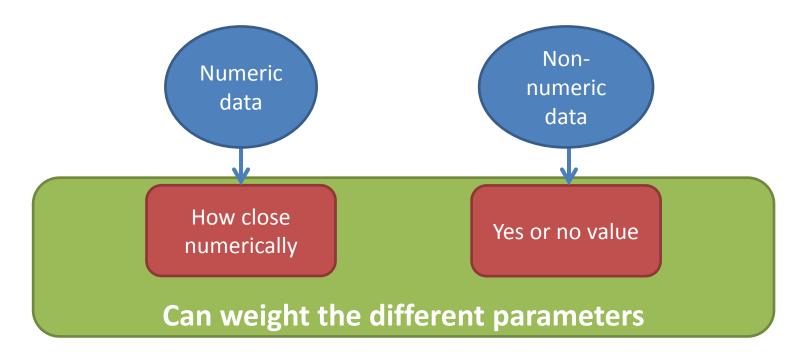
Thank you for your attention!


----- Additional slides



Backend of the tool

Technique 1:	Inputs from the scientist					
Key Parameters	Scenario 1	Scenario 2	Scenario 3	Scenario		
Temperature	30°	40°	40°			
Porosity	0.1 %	0.1 %	0.25 %	•••		
CO ₂ present	5 MT	6 MT	10 MT			


Key Parameters	Operator Input	Clasest	Scenario 2		
Temperature	37°	Closest scenario	40°		Outputs
Porosity	0.1 %	→	0.1 %	\rightarrow	for Scenario 2
CO ₂ present	7 MT		6 MT		

REPEAT THIS PROCESS FOR THE OTHER TECHNIQUES

- How is the closest scientific scenario selected?
 - Gower similarity

- We will now ask the scientists for 4 things:
 - 1. List of <u>key parameters</u>
 - 2. List of possible <u>ranges</u> for key parameters
 - 3. List of <u>scenarios</u>
 - 4. <u>Outputs</u> for each scenario

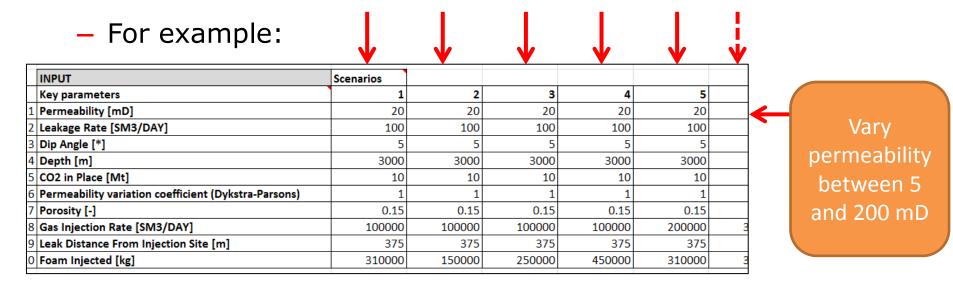
- 1. List of <u>key parameters</u>:
 - These are site characteristics that are <u>important/affect the</u> <u>output of your remediation results</u>
 - For example:

	INPUT
	Key parameters
1	Permeability [mD]
2	Leakage Rate [SM3/DAY]
3	Dip Angle [*]
4	Depth [m]
5	CO2 in Place [Mt]
6	Permeability variation coefficient (Dykstra-Parsons)
7	Porosity [-]
8	Gas Injection Rate [SM3/DAY]
9	Leak Distance From Injection Site [m]
0	Foam Injected [kg]

$\overline{}$	
	INPUT
	Key parameters
1	Temperature (°C)
2	Porosity (%)
3	Permeabillity (mD)
4	Distance to leak (m)
5	Leakage rate (kg/s)
6	Spatial extent leak (m)*
7	Type of reactive substance**

Might not be the same key parameters from technique to technique. Operator will only see the entire list.

- 2. List of possible <u>ranges</u> for key parameters
 - The operator will choose from these options
 - Also want to know the center value of these ranges


– For example:

		V	<u> </u>	V	<u> </u>
	Key parameters	bin 1	bin 2	bin 3	bin 4
1	Permeability [mD]	0-10	11-29	30-70	71-329
2	Leakage Rate [SM3/DAY]	1-50	51-149	150-250	
3	Dip Angle [*]	-1 - 1	2-7	8-12	
4	Depth [m]	1500-2500	2501-3500	3501-4500	
5	CO2 in Place [Mt]	10-30	30-50	50-70	
6	Permeability variation coefficient (Dyks	0-0.025	0.026-0.06	.061	
7	Porosity [-]	0.01-0.09	0.1-0.2	0.21-0.29	
8	Gas Injection Rate [SM3/DAY]	50000-150000	150000-250000	250000-350000	
9	Leak Distance From Injection Site [m]	0-50	50-100	100-250	250-500
.0	Foam Injected [kg]	100000-200000	200000-300000	300000-400000	400000-500000

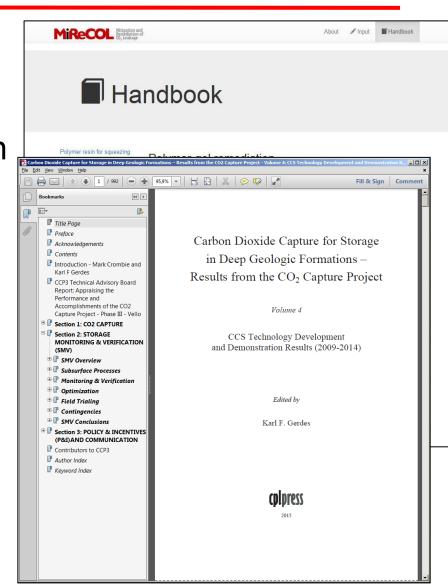
3. List of <u>scenarios</u>

- One scenario is a set of values for each key parameter
- Scientist varies the key parameters to span the realistic possibilities

The more scenarios the better, since there is higher chance that the operator's site will match the scientist scenario!

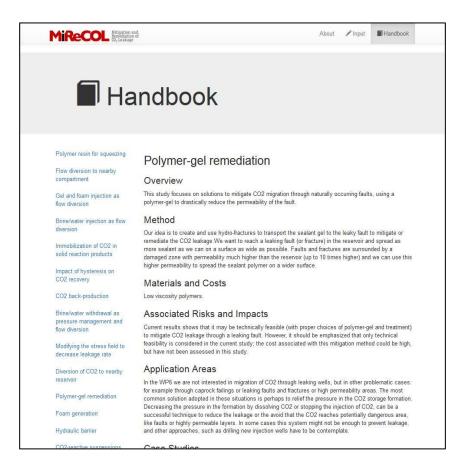
- 4. <u>Outputs</u> for each scenario
 - 1) Likelihood of success
 - 2) Spatial extent of remediation
 - 3) Economic cost
 - 4) Response time of remediation
 - 5) Longevity of remediation

– For example:


	INPUT		Scenarios			
	Key parameters	•	1	2	3	4
1	- ' '		20	20	20	20
2	Leakage Rate [SM3/DAY]		100	100	100	100
3	Dip Angle [*]		5	5	5	5
4	Depth [m]		3000	3000	3000	3000
5	CO2 in Place [Mt]		10	10	10	10
6	Permeability variation coefficient (Dykstra-Parso	ons)	1	1	1	1
7	Porosity [-]		0.15	0.15	0.15	0.15
8	Gas Injection Rate [SM3/DAY]		100000	100000	100000	100000
9	Leak Distance From Injection Site [m]		375	375	375	375
10	Foam Injected [kg]		310000	150000	250000	450000
	OUTPUT (as best as you can estimate) for the op	perator				
	likelihood o	of success				
		[%]	3	4	3	3
	spatial extent of ren	nediation				
		(km)	0.375	0.375	0.375	0.375
	economic cost of remed	٠,				
	OR list of materials	required	37372000	35772000	36058000	37344000
	response time of ren					
		(months)	48	48	47	46
	longevity of ren					
		(months)	2.76	1.33	2.22	4.00

Handbook part of the tool

- Part of MiReCOL web app
- Descriptions of remediation techniques (after MiReCOL reports; TNO action)
- PDFs of MiReCOL reports (e.g., see CCP3 report)



Handbook part of the tool

- Format for web app
 - Overview
 - Method
 - Materials and costs
 - Associated risks and impacts
 - Application areas
 - Case studies
 - References

