

Hontomín, Spain. Prepared for regular injection

J. Carlos de Dios^a, Miguel A. Delgado^a, Juan A. Marín^a, Ignacio Salvador^a, Carlos Martínez^b, Alberto Ramos^b ^aFoundation Ciudad de la Energía (CIUDEN). ^bTechnical University of Madrid. School of Mines and Energy Lecturer: J. Carlos de Dios. Director of Low Carbon Technologies

11th CO₂GeoNet Open Forum, *May 09-10 2016– Venice, San Servolo Island*

Index

Fundación Ciudad de la Energía

1.- Hontomín Technology Development Plant

- 2.- Site characterization
- 3.- CO₂ injection
- 4.- Knowledge gaps

Hontomín TDP

Fundación Ciudad de la Energía

Storage main goals

 \geq Refine CO₂ storage technologies in "on-shore" deep saline aquifer conditions (fractured carbonates)

Identification of cost \geq reduction action for the whole of the process

Potential risk assessment and corrective measures proposal

Support for developing \succ alternative geophysical technologies to characterize the seal-reservoir complex

Tools development for \geq dynamic modelling (hydraulic, hydrodinamic and chemical scope)

Project OXYCFB 300 "Compostilla"

European Energy Programme for Recovery

Objectives Phase I

Technology development for CO₂ oxy capture, inland transport and storage in saline aquifers supporting a future demo 300 MW CCS oxyCFB Power Station

- CIUDEN's Capture at 1:30 scale - Oxycombustion
- Tasks:
- Transport Closed-loop test rig 3 km long

3 TDP for:

- Storage Saline aguifer for advanced injection & monitoring

Site geophysical characterization

Activities and Monitoring	A c t i v i t y	Information Obtained
	classification	
Review existing 2D seismic and well log	Modeling	Preliminary dome structure and geological layers in seal-
data		reservoir complex.
3D seismic campaign	Field scale	Geological prognosis of the different formations, fault
		localization and compartmentalization into blocks. Basis
		for the development of the static model.
CSEM campaigns	Field scale	Electromagnetic subsurface baseline parameters.
Soil Gas monitoring (CO ₂ and others)		Gas emission baseline
and hydrogeological studies.		Hydrogeological baseline (B. Nisi et al., 2013).
Core analysis from HI and HA rock	Lab scale	Petrophysical parameters that condition the injection and
samples		CO ₂ trapping.
		Hydrodinamic and geochemical effects of the injection
		of brine and CO ₂ into the samples of core rock samples.
VCPs compaigns	Field easle	Detter knowledge of levers and faults in the visinity of the
vors campaigns	Field Scale	better knowledge of layers and lauts in the vicinity of the
		CO plume tracking in the vicinity of injection well
HI and HA well logging	Field scale	Identify target earbonate layer and everlaving marl
Th and the well togging		canrock
		Extent, continuity and variability of formations.
		Preliminary data of permeability and porosity parameters
Passive seismic control network	Field scale	Seismicity base line in the area of influence of TDP.
Hydrogeological control network	Field scale	Evolution of groundwater level and its nature.
Brine and CO ₂ injection	Field scale	Basis for the development of safe and efficient injection
		strategies.
Gas phase tracer tests	Field scale	Evolution of CO2 saturation distribution with time.
		Effects of impurities in the operating parameters and
		chemical iteration with the rock mass (J. de Elio et al.
		2013).

Site hydraulic characterization

Fundación Ciudad de la Energía

Connectivity Tests 11 đ dt dt = 1200 s H-A Well 11960 pressure [kPa] 11920 11880 11840 Pressure H-A Well (Keller P AA33X, SN1 20599) 11800 pumping rec re covery 22000 ump. Pressure H4 Well (DCX-25, memory gauge) ure [kPa] 20000 H-I Well 18000 ere. 16000 14000 0 20 21 22 23 24 25 1 2 3 13 18 19

Laboratory works

Permeability increase through fracture network due to hydrodinamic and geochemical effects (Modeled by Saphir ™)

GeoNet

Fundación Ciudad de la Energía

Injection conducted according transport conditions "OXYCFB300 Project"

Tubing choke installed 1000 m depth for avoiding high bottom hole overpressure and unadmissible induced seismicity on surface

Fundación Ciudad de la Energía

Distributed Temperature System

Timely R. Δt =60-300 sec Spatial R. ΔL =0,25m

Thermal gradient fairly homogeneous

Injection cooling due to cryogenic conditions

Drop pressure valve (choke 1.000 m depth):

Pre-heating due to friction

Joule-Thompson effect

Choke behaviour

CO2 injection performed in liquid phase being stored in supercritical phase in reservoir

CO₂ Injection with impurities

Fundación Ciudad de la Energía

IMPACTS

GeoNet

CO_2 Injection + 5% artificial air (21% O_2 + 79% N_2)

Effects of impurities

Operation inefficiency.- Increase WHP from 80 bar (CO_2 pure) to 90 bar (CO_2 + 5% air) Reservoir capacity decrease.- Density 840 kg/m³ (CO_2 pure) to 775 Kg/m³ (CO_2 + 5% air) >Alternative injection strategies, safe and cost effective in fractured carbonates with poor porosity and high anysotropy (i.e. cold injection avoiding the hidrate effects, solved with brine regarding the mixture acidification...)

>Innovative geophysical techniques for tracking the plume in this type of reservoirs.

>Deep monitoring tools to control the reservoir behaviour for the whole of the project life.

>New dynamic modelling for a realistic assessment of the site capacity and plume evolution, considering hydrodinamic and geochemical effects.

> Advanced tools for the interpretation of the seismic response related with the injection operations.

>New abandonment well techniques

➢ Good practice guidelines reagarding the different project stages (exploration, constructioncommissioning, operation, abandonment and the liability transfer) as the first step for developing an updated European Legal Framework for CGS.

Thank you for your attention

J.Carlos de Dios

jc.dedios@ciuden.es

11th CO₂GeoNet Open Forum, *May 09-11 2016 – Venice, San Servolo Island*