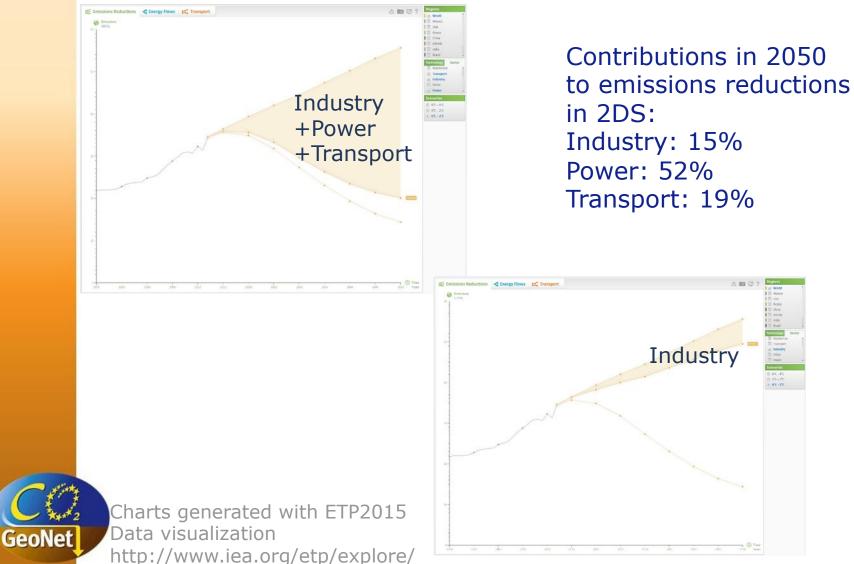


# CCS for industry emissionsthe CEMCAP project

Kristin Jordal

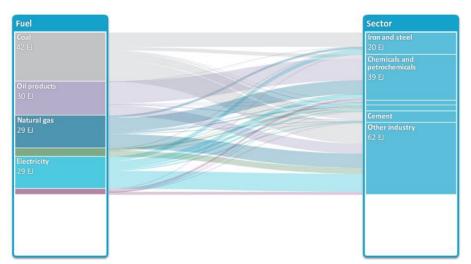
SINTEF Energy Research




### Outline

- → Industrial CO₂ emissions in the IEA 2DS
- → CO<sub>2</sub> emissions in cement industry
- → The CEMCAP project
- Typical cement plant flue gas and CO<sub>2</sub> compositions
- Outlook on refineries and hydrogen production






# Where are emission reductions projected to come in 2050 IEA 2DS?





## Energy use in industry

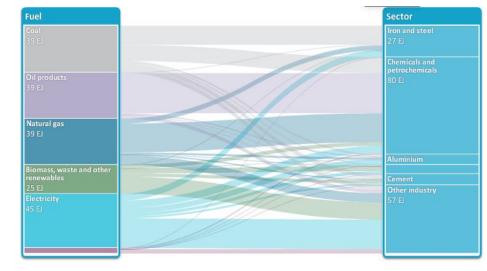


### 2012

Iron and steel: 20 EJ

Chemicals and

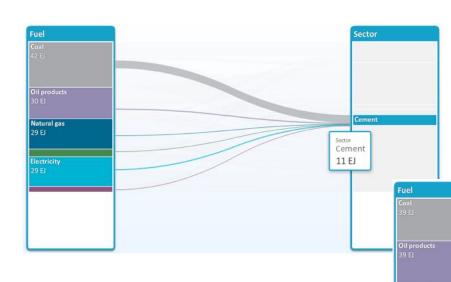
petrochemicals: 39 EJ


Cement: 11 EJ

#### 2050

Iron and steel: 27 EJ

Chemicals and petrochemicals: 80 EJ


Cement: 11 EJ





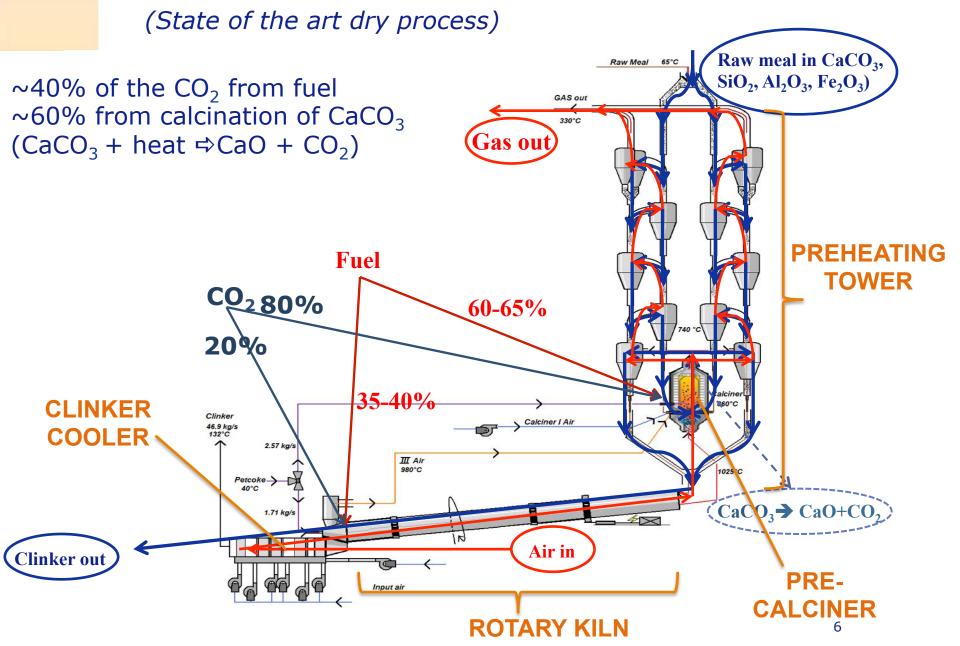


# Change in fuel mix projected for cement industry towards 2050



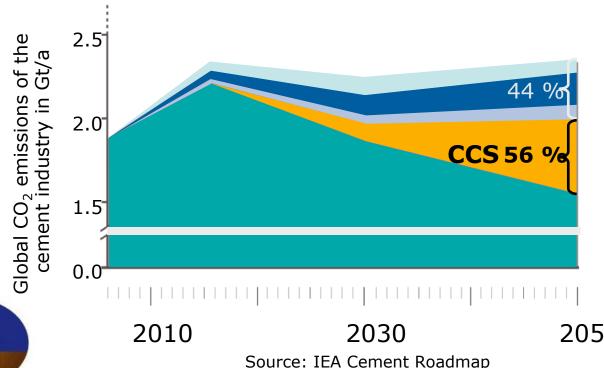
Mainly a shift from coal to biomass, waste and other renewables

This shift is already ongoing in Europe.


Cement 11 EJ

- Fuel consumption does not give the full CO<sub>2</sub> emissions picture for cement plants
- Cement production currently accounts for ~5% of global anthropogenic CO<sub>2</sub> emissions






## How does a modern cement plant work?



### The need for CCS in cement production

- IEA target for 2050: 50 % of all cement plants in Europe, Northern America, Australia and East Asia apply CCS
- Cement plants typically have a long lifetime (30-50 years or more) and very few (if any) are likely to be built in Europe → Retrofit



44% Reduction by:

- Increase of energy efficiency
- Alternative fuels
- Reduction of clinker share



2050

Source: IEA Cement Roadmap



## The CEMCAP project – CO<sub>2</sub> capture from cement production

The primary objective of CEMCAP is to prepare the ground for large-scale implementation of CO<sub>2</sub> capture in the European cement industry

- Project coordinator: SINTEF Energy Research
- •Duration: May 1<sup>st</sup> 2015 October 31<sup>st</sup> 2018 (42 months)
- Budget: € 10 million
- •EC contribution € 8.8 million
- Swiss government contribution: CHF 0.7 million
- Industrial financing ~€ 0.5 million
- Number of partners: 15



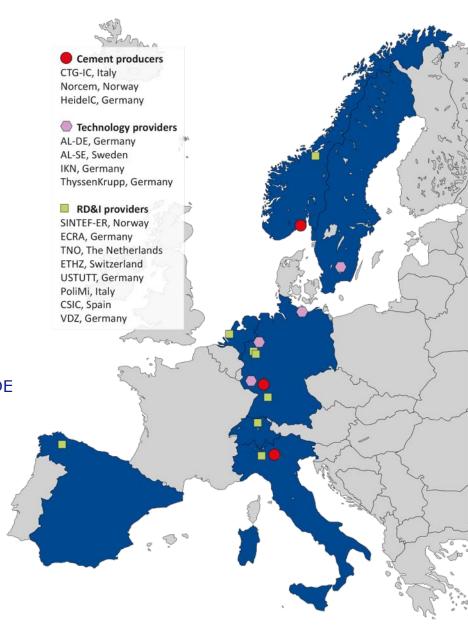


### **CEMCAP Consortium**

#### **Cement Producers**

CTG (Group Technical Centre of Italcementi), IT Norcem, NO HeidelbergCement, DE

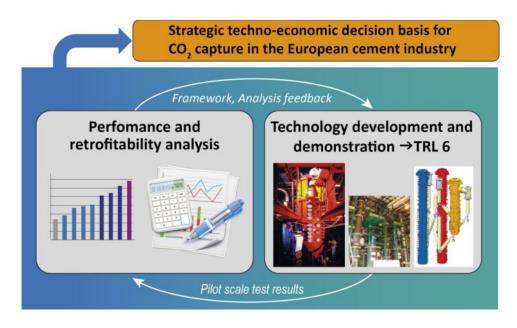
#### <u>Technology Providers</u>


Alstom Carbon Capture\* (AL-DE), DE Alstom Power Sweden\* (AL-SE), SE IKN, DE ThyssenKrupp Industrial Solutions, DE

#### Research Partners

VDZ, DE

GeoNet


SINTEF Energy Research, NO
ECRA (European Cement Research Academy), DE
TNO, NL
EHTZ, CH
University of Stuttgart, DE
Politecnico di Milano, IT
CSIC, ES



\*Aquired by GE Power, names will change



CEMCAP approach: iteration between analytical and experimental research

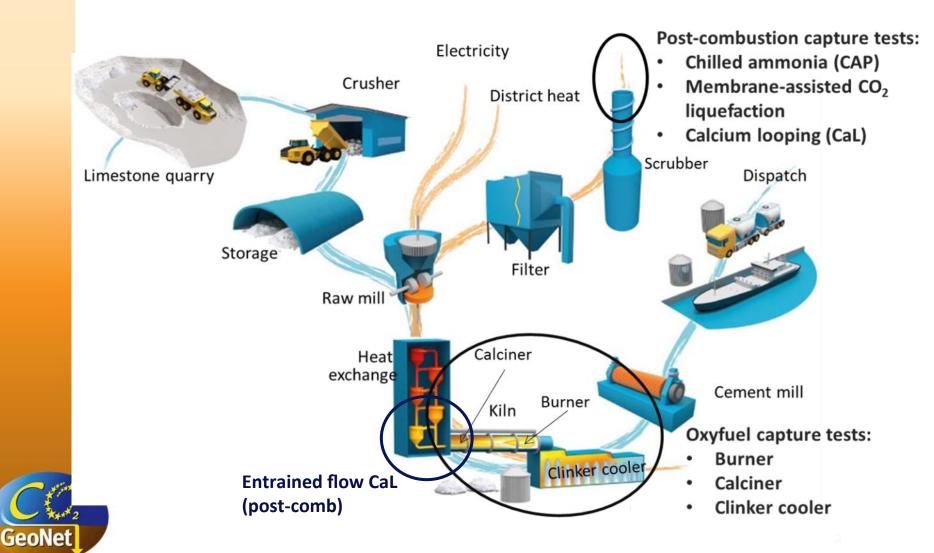


#### Analytical research

Capture process simulations
Simulations of cement plants
with CO<sub>2</sub> capture
Cost estimations/benchmarking
Retrofitability analysis
CCU for cement

#### Experimental research

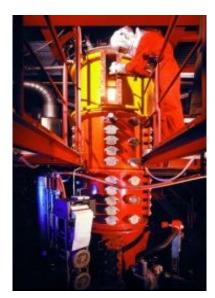
Testing of three components for oxyfuel capture


Testing of three different postcombustion capture technologies

~10 different experimental rigs

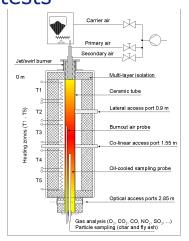


GeoNet


## Technologies to be tested in CEMCAP

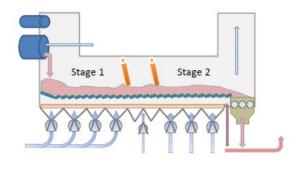





## Technologies to be tested - oxyfuel

Oxyfuel burner
Existing 500 kWth
oxyfuel rig at USTUTT is
being modified for
CEMCAP




Partners: USTUTT, TKIS, SINTEF-ER

Calciner test rig
Existing <50 kWth
entrained flow calciner
(USTUTT) will be used
for oxyfuel calcination
tests

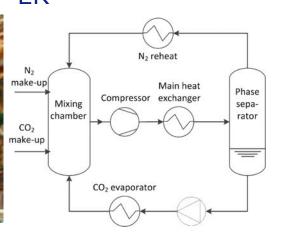


Partners: USTUTT, VDZ, IKN, CTG

Clinker cooler
Construction finished,
will be installed for onsite testing at
HeidelbergCement in
Hannover (summer
2016)



Partners: IKN, HeidelC, VDZ






## Technologies to be tested – post-combustion capture

Chilled Ammonia
Process (CAP)
Pilot tests at GE
Power Sweden
(never tested for such high CO<sub>2</sub>
concentrations
before, up till 35%)

Membrane assisted
CO<sub>2</sub> liquefaction
Novel concept,
suitable for high CO<sub>2</sub>
concentrations
Membrane tests: TNO
Liquef. tests: SINTEFER



Partners: TNO, SINTEF-ER

Ca-looping

End-of pipe CaL as well as integrated CaL is developed



USTUTT, CTG, PoliMi, CSIC, IKN



Partners: ETHZ, GE-SE, GE-DE



## CEMCAP techs differ in many ways

|            |                                         |                                                                                                                                                             | Post combustion capture technologies                                                              |                                                                                                                                                          |                                                                                                             |
|------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |                                         | Oxyfuel capture                                                                                                                                             | C h i l l e d<br>ammonia                                                                          | Membrane-<br>assisted CO <sub>2</sub><br>liquefaction                                                                                                    | C a l c i u m<br>Looping                                                                                    |
|            | CO <sub>2</sub> capture principle       | Combustion in oxygen (not air) gives a CO <sub>2</sub> -rich exhaust                                                                                        | NH <sub>3</sub> /water mixture<br>used as liquid solvent,<br>regenerated through<br>heat addition | Polymeric membrane<br>for exhaust CO <sub>2</sub><br>enrichment followed by<br>CO <sub>2</sub> liquefaction                                              | CaO reacts with CO <sub>2</sub> to from CaCO <sub>3</sub> , which is regenerated through heat addition      |
|            | Cement plant integration                | Retrofit possible<br>through modification of<br>burner and clinker<br>cooler                                                                                | Retrofit appears simple, minor modifications required for heat integration                        | No cement plant<br>modifications.<br>Upstream SOx, NOx,<br>H <sub>2</sub> O removal required                                                             | Waste from capture process (CaO) is cement plant raw material                                               |
|            | Clinker quality                         | Maintained quality must be confirmed                                                                                                                        | Unchanged                                                                                         | Unchanged                                                                                                                                                | Clinker quality is very likely to be maintained                                                             |
|            | CO <sub>2</sub> purity and capture rate | CO <sub>2</sub> purification unit<br>(CPU) needed. High<br>capture rate and CO <sub>2</sub><br>purity possible<br>(trade-off against<br>power consumption). | Very high CO <sub>2</sub> purity, can also capture NOx, SOx. High capture rate possible.          | High CO <sub>2</sub> purity (minor CO <sub>2</sub> impurities present). Trade-off between power consumption and CO <sub>2</sub> purity and capture rate. | Rather high CO <sub>2</sub> purity (minor/ moderate CO <sub>2</sub> impurities present). High capture rate. |
| ****2<br>t | Energy<br>integration                   | Fuel demand unchanged. Waste heat recovery + electric power increase.                                                                                       | Auxiliary boiler required + waste heat recovery. Electricity for chilling.                        | Increase in electric power consumption, no heat integration.                                                                                             | Additional fuel required, enables low-emission electricity generation.                                      |





## Flue gas characteristics – CO<sub>2</sub> emissions

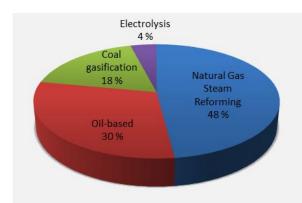
|            | _                |                                 |                         |                         |              |  |  |  |  |
|------------|------------------|---------------------------------|-------------------------|-------------------------|--------------|--|--|--|--|
|            | Compon ent       | Exhaust gas                     |                         |                         |              |  |  |  |  |
|            |                  | Conventional                    | From oxyfuel combustion |                         | From Post-   |  |  |  |  |
|            |                  |                                 | Min                     | Max                     | combustion*  |  |  |  |  |
|            | CO <sub>2</sub>  | 14 – 35 vol.<br>%               | 95 vol.%                | 99.9 vol.%              | > 99.0 vol.% |  |  |  |  |
|            | 02               | 3 – 14 vol.%                    | 1.2 vol.%               | 0.001 vol.%             |              |  |  |  |  |
|            | $N_2$            | Rest                            | 3.4 vol.%               | -                       |              |  |  |  |  |
|            | Ar               |                                 | 0.4 vol.%               | _                       |              |  |  |  |  |
|            | NO <sub>x</sub>  | 0. 5 – 0.8 g/<br>m <sup>3</sup> | < 0.55 g/m <sup>3</sup> | < 0.55 g/m <sup>3</sup> |              |  |  |  |  |
|            | SO <sub>2</sub>  | 50 – 400<br>mg/m <sup>3</sup>   | < 4 mg/m <sup>3</sup>   | < 4 mg/m <sup>3</sup>   |              |  |  |  |  |
|            | СО               | 0.1 – 2 g/m <sup>3</sup>        | < 0.3 g/m <sup>3</sup>  | -                       |              |  |  |  |  |
| ***        | H <sub>2</sub> O | 6 – 10 vol.%                    | -                       | -                       |              |  |  |  |  |
| .**.<br>et | HCI              | < 20 mg/m <sup>3</sup>          | -                       | -                       |              |  |  |  |  |

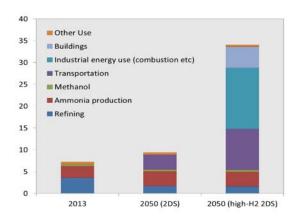




## CO<sub>2</sub> capture from refineries

- Emission sources: **10-25 stacks** depending on the complexity of the refinery
  - Fired heaters contribute from 40-60% of the emissions
  - Also hydrogen production, combined heat and power and the FCC unit.
- The overall capture rate for a refinery is considerably lower than 90% due to the distributed nature of emissions
  - End-of-pipe capture using amine technology is uneconomical for small emission sources
- CO<sub>2</sub> capture from syngas stream in the Steam Methane Reformer (SMR) process for hydrogen production is the most economical option for capture in a refinery
  - Solvent based capture at relatively high partial pressure
  - Around 50-60% of overall CO<sub>2</sub> emissions from hydrogen production can be captured
  - **Oxy-fired FCC** process is considered for CO<sub>2</sub> removal from the FCC process
    - Has implications on product performance and hence downstream processes


To overcome the distributed nature for end-of-pipe capture:


**Hydrogen combustion** in fired heaters in place of refinery fuel gas  $\Rightarrow$ CO<sub>2</sub> capture from a single source of hydrogen production



## H<sub>2</sub> production with CO<sub>2</sub> capture

- Current global H<sub>2</sub> production:
  - · Mainly fossil-fuel based
  - ~7.7 EJ/year
  - Related emissions: ~500 Mt of CO<sub>2</sub>/year
- IEA High H2 2DS envisages by 2050:
  - $\sim$ 35 EJ H<sub>2</sub>/year
  - Use of H<sub>2</sub> for transport, industry, buildings, energy
- Assuming costs for CO<sub>2</sub> emissions, IEA envisage in US, EU4\* and Japan by 2050:
  - 12-38% H<sub>2</sub> from renewable electricity and biomass
  - 58-81% H<sub>2</sub> from fossil fuels with CCS
- "Pre-combustion" separation technologies (absorption, adsorption, membranes, phase separation) can be combined to meet the purity requirements on H<sub>2</sub> and CO<sub>2</sub>
- Trade-offs between energy efficiency, purity requirements, product yield...









### Concluding remarks

- Curbing of industrial CO<sub>2</sub> emissions from cement will require CCS in order to contribute to reaching the 2 or 1.5 degree target
- Existing capture technologies are being developed and tested in CEMCAP for cement plant retrofit
- The composition of the captured CO<sub>2</sub> will vary depending on capture technology and process design
- From IMPACTS: There is no easy, one-size-fits-all solution for how a CCS chain should be designed and how to set the limits for the concentrations of impurities.
- Good communication is required between the different actors along the CCS chain to identify the requirements on CO<sub>2</sub> composition.
  - Trade-offs between energy consumption, cost and purity.
- Showstopper components/mixtures identified for transport or storage? Alert the CO<sub>2</sub> capture part of the CCS chain!





## Thank you for your attention!

#### **Acknowledgement**

The CEMCAP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

www.sintef.no/cemcap

Twitter: @CEMCAP\_CO2



